Chapter 12: HABITS OF MIND
Chapter 12: HABITS OF MINDThroughout history, people have concerned themselves with the transmission of shared values, attitudes, and skills from one generation to the next. All three were taught long before formal schooling was invented. Even today, it is evident that family, religion, peers, books, news and entertainment media, and general life experiences are the chief influences in shaping people's views of knowledge, learning, and other aspects of life. Science, mathematics, and technologyin the context of schoolingcan also play a key role in the process, for they are built upon a distinctive set of values, they reflect and respond to the values of society generally, and they are increasingly influential in shaping shared cultural values. Thus, to the degree that schooling concerns itself with values and attitudesa matter of great sensitivity in a society that prizes cultural diversity and individuality and is wary of ideologyit must take scientific values and attitudes into account when preparing young people for life beyond school. Similarly, there are certain thinking skills associated with science, mathematics, and technology that young people need to develop during their school years. These are mostly, but not exclusively, mathematical and logical skills that are essential tools for both formal and informal learning and for a lifetime of participation in society as a whole. Taken together, these values, attitudes, and skills can be thought of as habits of mind because they all relate directly to a person's outlook on knowledge and learning and ways of thinking and acting. This chapter presents recommendations about values, attitudes, and skills in the context of science education. The first part of the chapter focuses on four specific aspects of values and attitudes: the values inherent in science, mathematics, and technology; the social value of science and technology; the reinforcement of general social values; and people's attitudes toward their own ability to understand science and mathematics. The second part of the chapter focuses on skills related to computation and estimation, to manipulation and observation, to communication, and to critical response to arguments.
VALUES AND ATTITUDESScience education should contribute to people's knowledge of the shared values of scientists, mathematicians, and engineers; reinforcement of general societal values; the inculcation in people of informed, balanced beliefs about the social value of science, mathematics, and technology; and the development in young people of positive attitudes toward learning science, mathematics, and technology. Knowledge of the Values Inherent in Science, Mathematics, and Technology Science, mathematics, and technology incorporate particular values, some of which are different in kind or intensity from those in other human enterprises, such as business, law, and the arts. To understand science, mathematics, and technology, it is essential to be aware of some of the values that underlie them and give them character and that are shared by the people who work in the three fields. These values are evident in the recommendations presented in this report's three chapters on the nature of science, mathematics, and technology, which consider the importance of the following verifiable data, testable hypotheses, and predictability in science; of rigorous proof and elegance in mathematics; and of optimum design in technology. Reinforcement of General Societal Values Culturally, science can be viewed as both revolutionary and conservative. The knowledge it generates sometimes forces us to changeeven discardbeliefs we have long held about ourselves and our significance in the grand scheme of things. The revolutions that we associate with Newton, Darwin, and Lyell have had as much to do with our sense of humanity as they do with our knowledge of the earth and its inhabitants. Moreover, scientific knowledge can surprise us, even trouble us, especially when we discover that our world is not as we perceive it or would like it to be. The discovery that the earth is billions, rather than thousands, of years old may be a case in point. Such discoveries can be so distressing that it may take us yearsor perhaps take society as a whole several generationsto come to terms with the new knowledge. Part of the price we pay for obtaining knowledge is that it may make us uncomfortable, at least initially. Becoming aware of the impact of scientific and technological developments on human beliefs and feelings should be part of everyone's science education. It is also important for people to be aware that science is based upon everyday values even as it questions our understanding of the world and ourselves. Indeed, science is in many respects the systematic application of some highly regarded human valuesintegrity, diligence, fairness, curiosity, openness to new ideas, skepticism, and imagination. Scientists did not invent any of these values, and they are not the only people who hold them. But the broad field of science does incorporate and emphasize such values and dramatically demonstrates just how important they are for advancing human knowledge and welfare. Therefore, if science is taught effectively, the result will be to reinforce such generally desirable human attitudes and values. Science education is in a particularly strong position to foster three of these attitudes and valuescuriosity, openness to new ideas, and informed skepticism. Curiosity Scientists thrive on curiosityand so do children. Children enter school alive with questions about everything in sight, and they differ from scientists only in not yet having learned how to go about finding answers and checking to see how good those answers are. Science education that fosters curiosity and teaches children how to channel that curiosity in productive ways serves both students and society well. Openness to New Ideas New ideas are essential for the growth of scienceand for human activities in general. People with closed minds miss the joy of discovery and the satisfaction of intellectual growth throughout life. Because, as this report makes clear, the purpose of science education is not exclusively to produce scientists, it should help all students understand the great importance of carefully considering ideas that at first may seem disquieting to them or at odds with what they generally believe. The competition among ideas is a major source of tensions within science, between science and society, and within society. Science education should document the nature of such tensions from the history of scienceand it should help students see the value to themselves and society of participating in the push and pull of conflicting ideas. Informed Skepticism Science is characterized as much by skepticism as by openness. Although a new theory may receive serious attention, it rarely gains widespread acceptance in science until its advocates can show that it is borne out by the evidence, is logically consistent with other principles that are not in question, explains more than its rival theories, and has the potential to lead to new knowledge. Because most scientists are skeptical about all new theories, such acceptance is usually a process of verification and refutation that can take years or even decades to run its course. Science education can help students to see the social value of systematic skepticism and to develop a healthy balance in their own minds between openness and skepticism. The Social Value of Science, Mathematics, and Technology There is another sense in which values come into play in thinking about the outcomes of the learning process. Quite apart from what scientific values students may adopt for themselves, there is the issue of what students should know and believe about the general social value of those endeavors. Is it necessary that every graduate be convinced of the great value to society of science, mathematics, and technology? On balance, science, mathematics, and technology have advanced the quality of human existence, and students should become thoughtful supporters of them. But since science itself esteems independent thought so highly, it follows that teachers should not attempt to simply indoctrinate students into becoming uncritical supporters of science. Rather, they should take the position that in achieving the goals recommended in this report, students will end up with balanced views of the value of science, mathematics, and technology, and not be either uncritically positive or antagonistic. Attitudes Toward Learning Science, Mathematics, and Technology Students in elementary school have a spontaneous interest in nature and numbers. Nevertheless, many students emerge from school fearing mathematics and disdaining science as too dull and too hard to learn. They see science only as an academic activity, not as a way of understanding the world in which they live. The consequences of this aversion are severe, for it means that the lives of too many students are being limited and the nation's overall pool of talent from which scientists, mathematicians, and engineers are drawn is smaller than it should be. The schools may not be able to turn this situation around by themselves, but they are essential to any realistic hope of doing so. It is within teachers' power to foster positive attitudes among their students. If they choose significant, accessible, and exciting topics in science and mathematics, if they feature teamwork as well as competition among students, if they focus on exploring and understanding more than the rote memorization of terms, and if they make sure all their students know they are expected to explore and learn and have their achievements acknowledged, then nearly all of those students will indeed learn. And in learning successfully, students will learn the most important lesson of allnamely, that they are able to do so.
COMPUTATION AND ESTIMATIONThe recommendations presented in the preceding chapters are mostly about knowledge. However, they also imply that knowledge should be understood in ways that will enable it to be used in solving problems. In this sense, all of the foregoing recommendations are about thinking skills. Putting this the other way around, students are likely to learn thinking skills only in the process of coming to understand something substantive about the world, of encountering them in many different contexts and situations, and of using them repeatedly. Repeated experience with computations in meaningful contexts will also foster the higher-level skill of judging when computations can most appropriately be made in one's head or on paper, or with the help of a calculator or computer. Each of these methods has a legitimate role in problem solving, although their roles may be different in different circumstances. Basic Number Skills In everyday life, one must be able to make simple calculations in one's mind. However, the actual amount of mental arithmetic needed is quite limited and is well within the ability of all normal individuals to learn. This skill requires, first of all, that the individual memorize and be able to recall immediately certain number facts:
There are two kinds of mental calculations that everyone ought to be able to perform:
Calculator Skills In everyday life, and especially in the workplace, almost everyone encounters the need to make calculations. Until recently, paper and pencil were the most common means of solving problems that people could not do by mental arithmetic. For most students, school mathematics has meant doing calculations on paper. This usually takes the form of learning how to do long division, find percentages, or compute ratios, but not of learning why those algorithms work, when to use them, or how to make sense out of the answers. The advent of the small, inexpensive electronic calculator has made it possible to change that situation radically. Because calculators are so fast, they can make available instructional time in school for doing and learning real mathematics. Students can readily learn how to figure out steps for solving ordinary numerical problems, which operations to use, and how to check the reasonableness of their answers. Universal numeracy becomes a real possibility. The advantage of the calculator is not only pedagogical. Paper-and-pencil calculations are slow, prone to error, and as conceptually mysterious to most users as electronic tools are. When precision is desired, when the numbers being dealt with have multiple digits, or when the computation has several steps, the calculator offers many practical advantages over paper and pencil. But those advantages cannot be realized unless people learn how to use calculators intelligently. Calculator use does require skill, does not compensate for human errors of reasoning, often delivers answers with more precision than the data merit, and can be undermined by operator error. The key is for students to start using calculators early and to use them throughout the school years in as many different subjects as possible. Everyone should be able to use a calculator to do the following:
To make full and effective use of calculators, everyone should also be able to do the following:
There are many circumstances in which an approximate answer is as useful as a precise one. Indeed, this may be the rule rather than the exception. Estimating approximate answers can often take the place of making a precise measurement or a careful calculation but in most cases will serve as a check of calculations made using electronic calculators or paper and pencil. Skill in estimation is based on a sense of what an adequate degree of precision is in a particular situation, which in turn depends on understanding the context of the problem and the purpose of the calculation. Among particular estimation skills, everyone should be able to estimate the following:
It often happens that an answer shown on a calculator is wrong because the information entered was wrong, the information was entered incorrectly, or the wrong sequence of operations was used. In situations where there is no basis for judging the appropriateness of an answer arrived at by calculation, everyone should be able to figure out a rough estimate of what the answer ought to be before accepting it. This involves being able to do three things:
MANIPULATION AND OBSERVATIONEveryone should acquire the ability to handle common materials and tools for dealing with household and other everyday technologies, for making careful observations, and for handling information. These include being able to do the following:
COMMUNICATION SKILLSDiscourse in science, mathematics, and technology calls for the ability to communicate ideas and share information with fidelity and clarity, and to read and listen with understanding. Some of the skills involved are specific to science, mathematics, and technology, and others are generalalthough even those are not independent of content. Everyone should have the skills that will enable him or her to do the following:
CRITICAL-RESPONSE SKILLSIn various forms, the mass media, teachers, and peers inundate students with assertions and arguments, some of them in the realm of science, mathematics, and technology. Education should prepare people to read or listen to such assertions critically, deciding what evidence to pay attention to and what to dismiss, and distinguishing careful arguments from shoddy ones. Furthermore, people should be able to apply those same critical skills to their own observations, arguments, and conclusions, thereby becoming less bound by their own prejudices and rationalizations. Although most people cannot be expected to become experts in technical fields, everyone can learn to detect the symptoms of doubtful assertions and arguments. These have to do with the ways in which purported results are reported. Students should learn to notice and be put on their guard by the following signs of weak arguments:
|
|
Copyright © 1989, 1990 by American Association for the Advancement of Science |